1-STEP FLOW CONTROL VALVE WITH SHUT-OFF VALVE (HFD) (WITH PRESSURE COMPENSATION, WITH PRESSURE AND TEMPERATURE COMPENSATION)

Description of the model designation

HFD1-PG2K-1M-03(A)

Model No. Nominal size of main valve Operating method of sub valve M: Pressing-down type 1: Normally open internal drain 3: Normally open external drain Check valve Flow adjustment range Piping method G: Gasket Function category P: With pressure compensation K: With pressure and temperature compensation Max. operating pressure of main valve 1:7 MPa 2:14 MPa Directional control valve (sub valve) Flow control valve (main valve)

This is a compound valve built by assembling a flow control valve with pressure compensation, a shut off valve and a check valve.

It is used to control the feed operation (rapid feed \rightarrow slow feed \rightarrow rapid return) of e.g. a machine tool.

Features

- The valve is compactly designed and is suitable for feed control of singlepurpose machine tools and automatics.
- 2. Since the valve incorporates a pressure compensation mechanism, it keeps the controlled flow constant regardless of the pressure variation at the IN and OUT ports. If a valve equipped with the temperature compensation mechanism in addition to the pressure compensation mechanism is used, the valve can keep the controlled flow constant even if the fluid temperature (viscosity) varies.
- 3. The flow is controlled almost in direct proportion to the division on the flow adjusting dial.
- To achieve good pressure compensation performance, the pressure difference between the IN and OUT ports must be maintained at 0.6 MPa or larger.
- \bullet The valve mounting face must be finished to the same surface finish ${3.2Z \over \bigtriangledown \bigtriangledown \bigtriangledown}$ as the valve face.
- The edge angle of the dog (cam) must be 30 deg. or smaller. The roller must have a hardness in the range H_RC48 to H_RC52.
- When controlling slow feed → rapid feed in feed operation, it is necessary to apply a back pressure of approximately 0.35 MPa at the OUT port for the internal drain type or at the DR port for the external drain type.
- The pressing-down force varies according to the back pressure as shown in the table to the right.
- If the circuit is configured so that the back pressure (OUT port pressure) becomes high with the internal drain type, the back pressure must be 4 MPa or lower since high back pressure will shorten the life of the roller and the pin.

Nominal size	Pressing-down force (N)
02	154 × Back pressure (MPa) + 110
03	250 × Back pressure (MPa) + 125
04	310 × Back pressure (MPa) + 180

NOTE: The pressing-down force value in the specification table indicates the value when the back pressure is "0".

Max. operating pressure (MPa) Free flow (L/min) Pressing-down force (N) Flow adjustment range (L/min) Nominal Model With pressure compensation size 0.1 to 1 HFD1-PG1K-1M-02 With pressure compensation 02 7 12 110 0.1 to 2 HFD1-PG2K-1M-02 0.2 to 4 HFD1-PG4K-1M-02 0.1 to 1 HFD1-PG1K-1M-03A 7 ้ดบา 03 30 125 0.1 to 2 HFD1-PG2K-1M-03A 0.2 to 8 HFD1-PG8K-1M-03A 0.1 to 1 HFD1-KG1K-1M-02 With pressure and With pressure and temperature compensation temperature 02 7 12 110 0.1 to 2 HFD1-KG2K-1M-02 compensation IN 0.2 to 4 HFD1-KG4K-1M-02 0.1 to 2 HFD1-KG2K-1M-03 03 7 30 125 0.2 to 8 HFD1-KG8K-1M-03 HFD2-KG1K-1M-04A 0.1 to 1 OUT 04 14 180 0.1 to 2 HFD2-KG2K-1M-04A 50 0.4 to 16 HFD2-KG16K-1M-04A

Internal drain type

FLOW CONTROL VALVES

Mass: 1.1kg

HFD1-KG*K-1M-02

HFD1-KG*K-3M-02

Mass: 4.0kg

HFD1-KG*K-3M-03

E

Description of the model designation

HFDF2-KG8K-1M-K1-04(A)

This is a compound valve built by assembling a flow control valve with pressure compensation, a shut off valve and a check valve.

It is used to control the feed operation (rapid feed \rightarrow slow feed \rightarrow rapid return) of e.g. a machine tool

Features

- 1. The valve is compactly designed and is suitable for feed control of singlepurpose machine tools and automatics.
- 2. Since the valve incorporate a pressure compensation and temperature compensation mechanism, it keeps controlled flow constant regardless of the pressure variation at the IN and OUT port and the viscosity variation due to temperature change.
- 3. The flow is controlled almost in direct proportion to the division on the flow adjusting dial.
- To achieve good pressure compensation performance, the pressure difference between the IN and OUT ports must be maintained at 0.6 MPa or larger
- The valve mounting face must be finished to the same surface finish 3.2Z as the valve face.
- The edge angle of the dog (cam) must be 30 deg. or smaller. The roller must have a hardness in the range H_RC48 to H_RC52.
- When controlling slow feed \rightarrow rapid feed in feed operation, it is necessary to apply a back pressure of approximately 0.35 MPa at the OUT port for the internal drain type or at the DR port for the external drain type.
- The pressing-down force varies according to the back pressure as shown in the table to the right.
- If the circuit is configured so that the back pressure (OUT port pressure) becomes high with the internal drain type, the back pressure must be 4 MPa or lower since

Nominal size

03

04

Pressing-down force (N)

250 × Back pressure (MPa) + 125

310 × Back pressure (MPa) + 180

NOTE: The pressing-down force value in the specification table indicates the value when the back pressure is "0".

high back pressure will shorten the life of the roller and the pin.

Model No. high back pressure will sho
Nominal size of main valve
Max. control flow of sub valve 1: 1 L/min
Function category of sub valve K: With pressure and temperature compensation
Operating method of sub valve M: Pressing-down type
 1: Normally open internal drain 3: Normally open external drain
Check valve
——— Flow adjustment range
——— Piping method G: Gasket
Function category K: With pressure and temperature compensation
Max. operating pressure of main valve 1: 7 MPa 2: 14 MPa
Flow control valve (sub valve)
——— Directional control valve (sub valve)
——— Flow control valve (main valve)

Internal	drain	type	

Internal drain type

Nominal	Max. operating pressure	Free flow	Pressing-down force (N)	Flow adjustment range (L/min)		Model
size	(MPa)	(L/min)		No. 1 feed	No. 2 feed	Widden
03	7	30	125	0.2 to 2	0.1 to 1	HFDF1-KG2K-1M-K1-03
03	7	30		0.2 to 8	0.1 to 1	HFDF1-KG8K-1M-K1-03
04	14	50	180	0.2 to 2	0.1 to 1	HFDF2-KG2K-1M-K1-04A
04	14	50		0.2 to 8	0.1 to 1	HFDF2-KG8K-1M-K1-04A

External drain type

External drain type

Nominal	Max. operating pressure	Free flow	Pressing-down force	Flow adjustment range (L/min)		Model	
size	(MPa)	(L/min)	(N)	No. 1 feed	No. 2 feed	WOUCI	
03	7	30	125	0.2 to 2	0.1 to 1	HFDF1-KG2K-3M-K1-03	
				0.2 to 8	0.1 to 1	HFDF1-KG8K-3M-K1-03	
04	14	50	180	0.2 to 2	0.1 to 1	HFDF2-KG2K-3M-K1-04A	
				0.2 to 8	0.1 to 1	HFDF2-KG8K-3M-K1-04A	

Mass: 4.0kg

1-STEP FLOW CONTROL VALVE WITH ROTARY TYPE SHUT-OFF VALVE (HFD) (WITH PRESSURE AND TEMPERATURE COMPENSATION))

This is a compound valve built by assembling a flow control valve with pressure and temperature compensation, a shut off valve and a check valve.

It is used to control the feed operation (rapid feed \rightarrow slow feed \rightarrow rapid return) of machine tools, etc.

Features

- 1. The switching mechanism for the shut-off valve has been changed from the conventional spool forcing down type to the spool rotation type.
- The dog pressing force can be lightened since the spool rotating force does not change even if the OUT port pressure (back pressure) varies.
- 3. This valve can also be used for light bed feed control since it can control rapid feed \rightarrow 1st step feed simply.
- To achieve good pressure compensation performance, the pressure difference between the IN and OUT ports must be maintained at 0.6 MPa or larger.
- \bullet The valve mounting face must be finished to the same surface finish $\frac{3.2}{\bigtriangledown\bigtriangledown\bigtriangledown}$ as the valve face.
- The dog section pin (ϕ 9 ±0.1 mm) must have a hardness in the range H_RC34 to H_RC44.

Description of the model designation

Specifications

-					
Nominal size	Max. operating pressure (MPa)	Free flow (L/min)	Rotating torque (N⋅m)	Flow adjustment range (L/min)	Model
03	7	30	1	0.2 to 2	HFD1-KG2K-1R-03
03			ľ	0.2 to 8	HFD1-KG8K-1R-03
		50	1.3	0.1 to 1	HFD1-KG1K-1R-04
04				0.2 to 2	HFD1-KG2K-1R-04
				0.4 to 16	HFD1-KG16K-1R-04

Outside dimensions

Ε

2-STEP FLOW CONTROL VALVE WITH ROTARY TYPE SHUT-OFF VALVE (HFDF) (WITH PRESSURE AND TEMPERATURE COMPENSATION))

Description of the model designation

Specifications

Nominal	Max. operating pressure	Free flow	Rotating torque	Flow adjustment range (L/min)			
size	(MPa)	(L/min)	(N·m)	No. 1 feed	No. 2 feed	Model	
03	- 7 -	30	1 -	0.2 to 2	0.1 to 1	HFDF1-KG2K-1R-K1-03	
03				0.2 to 8		HFDF1-KG8K-1R-K1-03	
0.4		50	1.3	0.1 to 2	0.1 to 1	HFDF1-KG2K-1R-K1-04	
04				0.2 to 8		HFDF1-KG8K-1R-K1-04	

Outside dimensions

This is a compound valve built by assembling a flow control valve with pressure and temperature compensation, a shut off valve and a check valve.

It is used to control the feed operation (rapid feed \rightarrow slow feed \rightarrow rapid return) of machine tools, etc.

Features

- 1. The switching mechanism for the shut-off valve has been changed from the conventional spool forcing down type to the spool rotation type.
- 2. The dog pressing force can be lightened since the spool rotating force does not change even if the OUT port pressure (back pressure) varies.
- The valve can also be used for light bed feed control since it can control rapid feed → 1st step feed → 2nd step feed simply.
- To achieve good pressure compension performance, the pressure difference between the IN and OUT ports must be maintained at 0.6 MPa or larger.
- The valve mounting face must be finished to the same surface finish $\frac{3.2 \text{ Z}}{\heartsuit \heartsuit \heartsuit}$ as the valve face.
- The dog section pin (ϕ 9 ±0.1 mm) must have a hardness in the range H_RC34 to H_RC44.